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Abstract. Two entirely new, fused di(oxazane) heterocycles, the diastereomeric 1,5-dioxa-3,7- 
diazadecalin (DODAD) and 1,5-diaza-3,7-dioxadecalin (DADOD) systems (3, 4, 6 and 7) were 
prepared and probed, both experimentally and computationally. The enantiopure 2,6-di(p- 
nitrophenyl)-cis-DODAD and -cis-DADOD derivatives (10, 11) underwent X-ray analysis. 
© 1997 Published by Elsevier Science Ltd. 

We have been pursuing recently L2 the construction and study of  new types of  macrocyclic systems built 

on 1,3,5,7-tetraheterodecalin (THD) t (Scheme 1) core molecules in their trans or cis configuration (with the 

latter's two possible forms, "X-inside" and "X-outside"). Oxygen (X=O) 1,3,5,7-tetraoxadecalin (TOD) 2 

diacetal systems were the first to be studied followed by the nitrogen (X=NH) tetraazadecalin (TAD) t diaminal 

analogues, with particular attention to their stereoelectronic 3 features and propensity for metal ion inclusion) ~'d 
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Scheme 1. The diastereoisomeric 1,3,5,7-tetraheterodecalin molecular species. 

We report now the entirely novel types of  tetraheterodecalin systems, namely trans- and cis-l,5-dioxa- 

3,7-diazadecalin (DODAD) and -1,5-diaza-3,7-dioxadecalin (DADOD)*. Thus ( Scheme 2), cis-DODAD (3) 

and cis-DADOD (6) and substituted derivatives were prepared from the respective threo-L-1,4-diamino-2,3- 

butanediol ( l )  and threo-D-2,3-diamino-l,4-butanediol (2). 1 was secured by existing methods 4 and 2, by 

improved procedures 4"5, both starting from L-tartaric acid. The reaction ofmeso  starting materials with various 

aldehydes gave corresponding trans diastereomers 4 and 7. 

Reaction of  I with formaldehyde in water at and below room temperature gave a kinetic product in 30% 

yield, identified as the tricyclic compound (5), which is evidently formed via the 5,5'-bi(oxazolidinyl) primary 

product ( Scheme 2). At higher temperatures and optimally at pH 3, the thermodynamic product cis-DODAD 3 

could be isolated in 75% yield. The reaction of  2 with aqueous formaldehyde was even faster to yield 3,3'- 

methylene-4,4'-bi(oxazolidinyl) (g), apparently by a similar kinetic route. However, by using an excess of 2 at 

higher temperatures (-100°C) and low pH, cis-DADOD 6 was obtained in ratio l : l  with 8, each in 20% yield. 

'~ Due to a minor but basic omission in the CIP rules, one nmst use 9,10-helicity to assign configuration to chiral 
dissymmetric cis-decalin systems. Thus, 10 is (2R,6R. 9S;9, l O-P)-2,6-di(p-nitrophenyl)-cis-l,5-dioxa-3,7-diazadecalin. 
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Scheme 2. The reactions of 1,2,3,4-diaminobutanediols with aldehydes and their stereospecific products. 

In the reaction of 1.2HC1 with 4-nitrobenzaldehyde (Scheme 3) and aqueous K2CO3, the stable Schiff base 

1,4-di(p-nitrobenzaldimino)-2,3-butanediol 9 was immediately formed and isolated in crystalline form (various 

electron-poor aryl aldehydes behaved similarly). Acid catalysed ring closure of 9 in refluxing methylene chloride 

gave 2,6-di(nitrophenyl)-DODAD 10 in quantitative yield. This happened also, albeit slower, in the solid state. 

The ring-chain tautomerism in 1,3-oxazines has been thoroughly and illuminatingly studied 6 and is observed in 

the cis-DODAD series, as well. The 2,6-diaryl systems with substituents of higher Hammett o values show 

higher DODAD/Schiff base ratios 6, the tautomeric equilibria in case of Ar=-p-nitrophenyl being almost 

completely shifted to DODAD (10). Notably, in the reactions with aromatic aldehydes only 2,6-aryl substituted 

cis-DODAD systems were isolated and no five-membered (oxazolidine) products were observed, in agreement 

with previous observations 6c. At the same time, the DADOD derivative (11) was obtained directly from 2 with 

p-nitrobenzaldehyde in water at room temperature, within 18 hrs ( 9 0 % ) ,  with no apparent Schiff base 

intermediacy. 

l~c Ar k _Q/Hc H Ar [~N=CHAr Ar H N Ar 

.--I-o. 

9 10 11 
Ja,c- 10 Hz, Jb.d = 2Hz Ja,c = 13.2 Hz, Jb,c = 11Hz, Jb,d = 2H 

Scheme 3. 2,6-Diaryl cis-DODAD and -DADOD compounds (N,Oinside). In 9, 10 & 11, Ar =p-nitrophenyl. 
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NMR (nOe, 3j) measurements provided clear evidence that compounds, 3, 6, 10 and 11 are N,O-inside 

forms with axial N-H (Schemes 2 & 3); thus, the small vicinal coupling constants of the Gx, 10 hydrogens (as 

also in the O-inside forms in the TOD series 2) exclude an anti relationship. 

Some of these experimental results are of stereoelectronic origin. The anomerw effect 3 in O-C-O 3~'b, N-C- 

N 3c'd and O-C-N 3¢'f containing systems is well known. The O-C-N anomeric unit is outstanding, since it 

incorporates a good donor (N) adjacent to an excellent acceptor (O). Hence, in our systems, conformers having 

an N-lone-pair (lp) antiperiplanar to the adjacent C-O bond (H-N axial) are bound to exhibit enhanced stability, 

due to the postulated delocalization of the N-lp into the adjacent t~'c.o orbital. We caculated DODAD and 

DADOD using the MM2 force field (earlier reparametrized for the anomeric effect (MM2-AE) in all above X- 

C-Y moieties 3bf) and MM3 (recently reparametrized for the gauche effect (MM3-GE) 2b in O-C-C-O systems). 

These emulated well the axial H-N and the energetic preference for the N,O-inside conformations (Scheme 4). 
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Scheme 4. Relative energies (in kcal/mol) of trans and cis DODAD and DADOD in their most stable ring- and 
N-H (diaxial) conformations, as calculated by MM2-AE (MM3-GE). 

Both cis-2,6-di(p-nitrophenyl) compounds (10, 11) were submitted to single crystal X-ray diffraction 

analysis (Figure 1) 7 for ultimate structural definition; some relevant geometry details are shown below. 

. . . . . . . . . . . . . . . . . . . . . .  10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OI-C2 1.424 N3-C4 1.472 OI-C2-N3-C4 57.6 NI-C2 1.433(1.431) 03424 1.423(1.417) NI-C2-O3-C4 57.8(-59.4) 
01429 1.438 C4-C10 1.517 N3-C4-C10-O5 -74.7 NI-C9 1.454 (1.482) C4-C10 1.525 (1.524) O3-C4-C10-N5 67.5 (71.0) 
C2-N3 1.424 C9-C10 1.527 C6-O5-CI0-C4 176.3 C2-O3 1.444 (1.403) C9-C10 1.497 (1.535) C6-N5-C10-C4-172.5 (-169.6) 

Ol-C9-C10-O5 71.9 NI-C9-CI0-N5 -68.5 (-70.2) 
Figure 1. ORTEP drawings from the X-ray analyses of (2R,6R,9S; 9,10-P)-cis-2,6-di(p-nitrophenyl)-l,5- 
dioxa-3,7-diazadecalin (10) and (2S6S,9R; 9,10-M)-cis-2,6-di(p-rfitrophenyl)-l,5-diaza-3,7-dioxadecalin (11), 
along with selected structural parameters (bond lengths in A and torsion angles in deg). 7 
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